http://en.wikipedia.org/wiki/Nicolas_L%C3%A9onard_Sadi_Carnot

361 Lec 9 Tue 13sep11

Palais du Petit-Luxembourg, Paris, France

Nicolas Léonard Sadi Carnot (1796-1832) in the dress uniform of a student of the École Polytechnique.

24 August 1832 (aged 36)

1 June 1796(1796-06-01)

Died Paris, France

Residence France

Born

Alma mater

Nationality **French**

Physicist and engineer Fields

Institutions French army

École Polytechnique

École Royale du Génie

Sorbonne Collège de France

Siméon Denis Poisson André Marie Ampère Academic advisors

Dominique François Jean Arago

Carnot cycle Carnot efficiency Carnot theorem Carnot heat engine

Known for

Nicholas Leonard Sadi Carnot (1796-1832)

Influenced

Benoît Paul Émile Clapeyron **Rudolf Julius Emmanuel Clausius**

Notes

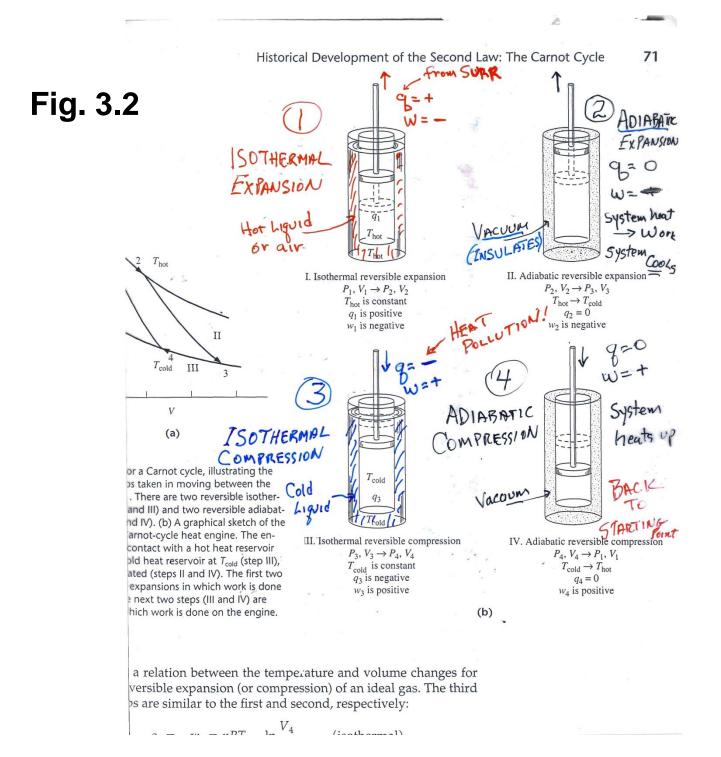
He was the brother of Hippolyte Carnot, his father was the mathematician Lazare Carnot, and his nephews were Marie François Sadi Carnot and Marie Adolphe Carnot.

Excerpts from "The Second Law" by P. W. Atkins

"War and the steam engine joined forces and forged what was to become one of the most delicate of concepts [the Second Law]"

Sadie Carnot was an engineer, and the son of a famous mathematician who was also a minister of war under Napoleon. Carnot fought against England in 1814.

After France lost that war, Carnot perceived that if France could develop a more efficient steam engine, it would rule the world.


From Wikipedia:

"Carnot sought to answer two questions about the operation of heat engines: "Is the work available from a heat source potentially unbounded?" and "Can heat engines in principle be improved by replacing the steam with some other working fluid or gas?" He attempted to answer these in a memoir, published as a popular work in 1824 when he was only 28 years old. It was entitled *Réflexions sur la puissance motrice du feu* ("Reflections on the Motive Power of Fire"). "

Published in 1824, this work was largely overlooked until Clausius recognized it as containing the key message of the 2nd Law in 1850.

The entire concept evolved from a simple hypothetical heat engine now known as the Carnot Cycle. From its simple reversible isothermal and adiabatic expansions and compressions of an ideal gas, Carnot elegantly proved that the theoretical maximum efficiency of any heat engine is given only by the fractional difference of the temperatures involved in the heat flow:

$$\frac{\text{Net work out}}{\text{Heat from hot reservoir}} = \frac{T_{hc} - T_{col}}{T_{hot}}$$

- 1 THE TWO ADIABATIC PARTS CANCEL
- 2 net w = WH + Wc = neg. because

To L TH

Cycle
$$\frac{2}{T_i}$$
 rev = 0 IF $\frac{\sqrt{3}}{V_4} = \frac{V_2}{V_1}$

00:1-

MAX EFFICIENCY OF REVERSIBLE HEAT ENGINE

TRUE for ALL Heat engines regardless of design & materials

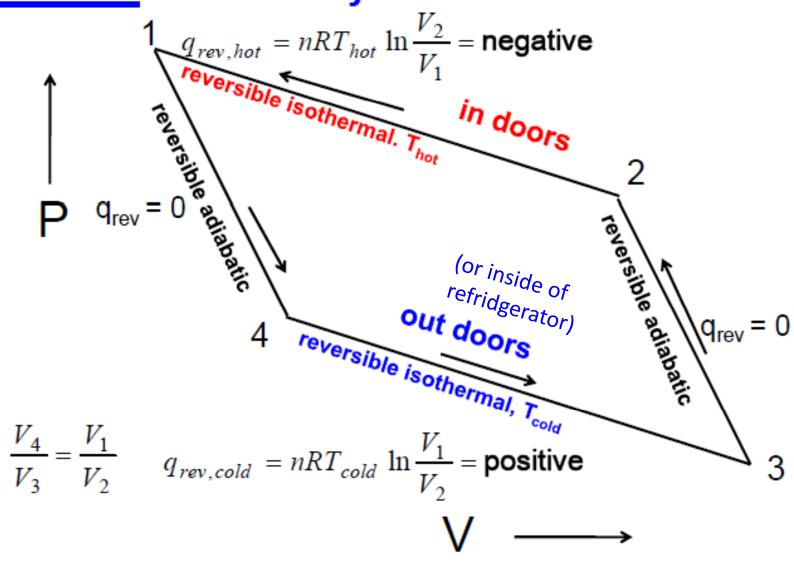
REASON: A MORE EFFICIENT ENGINE COULD

DRIVE THE REVERSIBLE DNE IN

REVERSE, i.e., HEAT WOULD

SPONTANEOUSLY FLOW FROM

COLD -> HOT !


THIS HAS NEVEZ BEEN SEEN TO HAPPEN

06:11-1 ENTROPY = S = State Variable $dS = \frac{dgrev}{T} \quad \frac{J}{K} \quad \text{units or } \frac{cal}{K}$ $\Delta S = \begin{cases} \frac{dgrev}{T} & \text{entropy unit} \end{cases}$ -> Grev if T Constant Efficiency of Heat Engine = WHOT + WOOLD
To To = THOT- TCOLD Our Best Steam Turbines

THOT 1000 K, TCOLD = 400 K Eff. = 1000 - 400 = 60%

WHAT ABOUT USING SUN & SPACE ?

Reversed Carnot's Cycle is a HEAT PUMP

As for the heat engine, for the <u>heat pump</u> what is valuable is q_{hot}, but now it is positive. Heat and work trade places. The efficiency is simply turned upside down.

$$\frac{\text{Heat} \quad \textit{into} \quad \text{warm} \quad \text{house}}{\text{Net} \quad \text{work} \quad \text{from} \quad \text{NW} \quad \text{Energy}} = \frac{nR \, \mathsf{T}_{\mathsf{hot}} \, \ln \frac{V_1}{V_2}}{nR \, \mathsf{T}_{\mathsf{hot}} \, \ln \frac{V_2}{V_1} - nR \, \mathsf{T}_{\mathsf{cold}} \, \ln \frac{V_3}{V_4}}$$

$$= \frac{\mathsf{T}_{\mathsf{hot}}}{\mathsf{T}_{\mathsf{hot}} - \mathsf{T}_{\mathsf{cold}}} = \frac{300}{300 - 270} = \frac{10 \; \mathsf{J} \; \mathsf{of} \; \mathsf{heat}}{\mathsf{1} \; \mathsf{J} \; \mathsf{of} \; \mathsf{electricit}} \quad \mathsf{y}$$