
What are you working on?

On what molecule do you want to do quantum chemistry?
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If H12 is positive, then c1 and c2 must have the opposite signs to lower the E 

If H12 is negative, then c1 and c2 must have the same sign to lower the E

This is just the weighted average

1 1 1 2c cφ φΨ = +Linear Variation
Wondering how can adding in a
higher energy  state LOWERS E???





Diagonalizing a matrix to get eigenvalues and eigenvectors

CT HC = CT C E = IE = E

where, E is a diagonal matrix that has the 
eigenvalues on the diagonal.
E = E1 0 0 0…

0 E2 0 0 …
0  0  E3 0 … 

C-1 = CTransposEFor a real, symmetric matrix:

C-1 = CadjoInT = CTransposE * For a Hermitian matrix:

HC =      C E
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A symmetric real matrix is Hermitian  
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HC = C E

HC = sC E

Orthonormal

NON-Orthogonal

NON-Orthogonal basis

Recall that the columns of the C matrix are the eigenvectors

Let’s pause to look at some actual eigenvectors output from
a Gaussian 09 output file



# hf/sto-3g pop=full

OH- singlet state  paired electrons  spin S=0  multiplicity 
= 2S+1 = 1    with charge = -1

-1 1
8 0.    0.  0. 
1 0.             0.    1.

Below is an input file for an ab initio calculation of the ground state energy
Hartree Fock electronic energy for the hydroxide ion

Atomic numbers of the atoms (or type O and H or o and h)

Cartesian coordinates , x,y,z,in free format (requires decimal points)

stands for Hartree-Fock calculation with a basis set of Slater Type Orbital made
from 3 Gaussian functions

output all MO eigenvectors 



SCF Done:  E(RHF) =  -74.0615732889     A.U. after    7 cycles
Convg =    0.3902D-09             -V/T =  1.9748

**********************************************************************

Population analysis using the SCF density.

**********************************************************************

Orbital symmetries:
Occupied  (SG) (SG) (SG) (PI) (PI)
Virtual   (SG)

The electronic state is 1-SG.
Alpha  occ. eigenvalues -- -19.38926  -0.58791   0.07224   0.24593   0.24593
Alpha virt. eigenvalues -- 1.21168

Molecular Orbital Coefficients:
1         2         3         4         5
O         O         O         O         O

Eigenvalues -- -19.38926  -0.58791   0.07224   0.24593   0.24593
1 1   O  1S          0.99428  -0.23774   0.11015   0.00000   0.00000
2        2S          0.02449   0.86833  -0.57415   0.00000   0.00000
3        2PX 0.00000   0.00000   0.00000   0.00000   1.00000
4        2PY         0.00000   0.00000   0.00000   1.00000   0.00000
5        2PZ        -0.00351  -0.05761  -0.54037   0.00000   0.00000
6 2   H  1S         -0.00644   0.26686   0.67815   0.00000   0.00000

6
V

Eigenvalues -- 1.21168
1 1   O  1S          0.08774
2        2S         -0.54857
3        2PX 0.00000
4        2PY 0.00000
5        2PZ 0.96100
6 2   H  1S          0.99946

Small part of the output file

MO energies
columns are the eigenvectors = LCAO
coefficients 

Note: Because the Slater orbitals have NO RADIAL
NODES (spherical), the 1s and 2s become mixed 
to create the nodes





HC = sCE
s is diagonalized in the usual way: sa =aI; a-1sa =a-1aI = I
because the eigenvalues of S are all = 1 if normalized basis
Now insert I cleverly a couple of places:
Haa-1C = saa-1C E
(a-1Ha) (a-1 C) = (a-1sa)(a-1C) E
a-1Ha and a-1sa are examples of similarity transformations, one 
property of which is they do not affect eigenvalues.

thus: H’C’  = I C’E
H’ is diagonalized as usual giving  C’ = a-1 C
But we want C so mult. both sides by a
aC’ = aa-1 C = C, the original matrix of ci



Effect of Non-orthogonality for two normalized, but non-orthogonal
basis functions     for which H11 = H22 = α and H12 = β (degenerate case)

=  0

=  0
but S11= S22= 1  and S12 = S21 so call it S 

(α -E)c1 +  (β -SE)c2 =  0

(β -SE) c1 + (α - E)c2 =  0

Eigenvalues = ? (α -E)2 - (β -SE)2= 0Determinant = 0 :
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 when we choose phase so S is positve,  will be negative
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Note that Ehiger- (α-β) is greater then Elower- (α+β).  Therefore,
the overlap makes the upper state MORE antibonding than the 
bonding  state is bonding.  
Thus, He2 does not have a zero bondorder, but a negative bond order 



Electron Spin, Spin Orbitals, and Slater Determinants 

Quantization of Angular Momentum: 
L2 = L(L+1) (h/2π)2 ; 
Lz = m (h/2π)
“multiplicity” = degeneracy = 2L+1 = the number of different                

m values from –L to +L  (z components) 

For electrons  we use S for total spin angular momentum instead of L
for single electrons  S = s = ½ h/2π, therefore m = ½ and  -½

(Don’t say spins are + and – ½   ;   spin, S, is never negative, only some of the m values
z

Example of S=1,  m=1,0,-1
2S+1 =3 



Spin Statistics Theorem

permutation of two identical fermion coordinates changes sign of wavefunction 
(“antisymmetric”)  leads to exclusion principle

permutation of two identical boson coordinates DOES NOT change sign 
of wavefunction (“symmetric”) leads to inclusion principle



Electron Spin State Functions: 

|α> has m = ½
|β> has m = -½

with h/2π = 1 atomic unit
Sz|α> = ½ |α>
Sz|β> = -½ | β >
both have s= ½ 
therefore

S2|α> = ½(½+1) |α>
S2|β> = ½(½+1) |β >



Helium   ground state,  and singlet vs triplet excited state
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The notation of spin orbital is often used for compactness:
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For example the ground state function for He can be written as:

The space-spin separated form is convenient for understanding the 
triplet state of a 2-electron system. This factorization, however, 
cannot be done for 3 or more electrons.



Now consider the lowest excited states of He, 1s2s, an example of 
an open shell system.

Here one must consider that electron exchange is also between the 
spatial orbitals as well as the spin functions.

Because we may factor into space times spin functions, it is 
obvious that one may achieve an antisymmetric function two 
general ways: 
(1) space = sym,        spin= antisymmetric to permutation
2) space = antisym, spin= symmetric      to permutation

There is only 1 way to achieve the (1), so it is called a singlet state:

)]2()1()2()1([  )]2(1)1(2)2(2)1(1[singlet αββα −+=Ψ ssss



There are 3 ways to have a  symmetric spin function while 
having an antisymmetric space function, however:

[1 (1)2 (2) 2 (1)1 (2)][ (1) (2)],                    1 / 2       1 / 2   1
triplet

Ss s s s Mα α

Ψ =

− = + =

[1 (1)2 (2) 2 (1)1 (2)][ (1) (2) (1) (2)],   1 / 2     1 / 2 0Ss s s s Mα β β α− + = − =

[1 (1)2 (2) 2 (1)1 (2)][ (1) (2)],                    1 / 2     1 / 2 1Ss s s s Mβ β− = − − = −

Notice that the antisymmetric space function vanishes whenever the two electron
are at the same point in space—ENTIRELY because of the wavefunction, meaning 
that the two electrons with same ms avoid each other—
NOT because of Coulombic repulsion, but because of the Pauli exclusion principle

This is qualitatively why TRIPLET STATES have LOWER energy than the corresponding
singlet state.

This obeys the universal rule of quantum angular momentum:  MS=-S,  -S +1, -S +2 ... +S 
i.e., 2S+1 values.
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