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More Hermitian :  adjoint and self-adjoint

“The adjoint of an operator A may also be called the Hermitian adjoint, Hermitian conjugate or Hermitian 
transpose” https://en.wikipedia.org/wiki/Hermitian_adjoint

Hermitian means “self-adjoint”
What is adjoint?  ˆˆ ofadjoint †AA ≡

Adjoint means: take the complex conjugate and operate backwards

ττ dfAgdgAf ∫∫ = **†* ˆ ˆ

The adjoint operator does not generally give the same result as the original 
operator.
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In other words, one gets the same number whether using a 
certain operator or using its adjoint, which leads to the definition 
used in the previous lecture. 
Other identities:

i.e., the definition  of a Hermitian matrix 
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Math of QM = math of analytic geometry 
(relation to row and column vectors)
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|a> =
ket =     column vector bra   =   row vector 
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a positive, real number

dot product  =  scalar product  = inner product

= 1  if |a> is normalized
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a real or complex
number

= 0  if |a> and |b> are orthogonal



Matrices and Matrix Multiplication

row – column rule:   

the row subscript is always FIRST  e.g., arc

a11 a12 a13
a21 a22 a23
a31 a32 a33

Matrix multiplication: CΒΑ =•

b11 b12 b13
b21 b22 b23
b31 b32 b33

=
c11 c12 c13
c21 c22 c23
c31 c32 c33

The result C of “multiplying”  two matrices A and B is all possible scalar products of 
the rows of A with the columns of B.  In other words: 
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Non-square matrices may be multiplied, but only if the number of columns 
of the left-hand matrix = the number of rows in the right-hand matrix

For example a 4 row by 3 column matrix x a 3 row, 2 column matrix 
(4 by 3  x  3 by 2) yields a   4 row by 2 column matrix

a11 a12 a13
a21 a22 a23
a31 a32 a33
a41 a42 a43

b11 b12
b21 b22
b31 b32

x =

c11 c12
c21 c22
c31 c32
c41 c42
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a  number

<a|b> 

Is: a 1 by 4  matrix  multiplying a  4 by 1 matrix
= ?
a 1 by 1 matrix = a number 

So, a scalar product of two vectors:



Outer Product = |b><a|  =  Operator

|b><a|  = column vector x row vector

Outer Products 

0   on  operating 
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|b><a|  = column vector x row vector
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|b><a| = = a    4 by 1 matrix
x a 1 by 4 matrix

= a 4 by 4 “matrix” 
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|a> = 0



In the previous lecture we noted that: 

mnnmnm Anmdxxx ≡≡ΨΨ≡ΨΨ∫ )()(*

which clearly means that the common “overlap” integral on the left must be an
inner product of two vectors.

In what sense is can we think of the integral as the scalar product of two vectors when we are used to think of the  
wavefunctions in the integral as common functions of x? 

Before giving a formal answer in terms of the Dirac delta function, one can simply recall the definition of 
acceptable quantum mechanical state functions, for which at every point in space there exists a single complex 
number, the absolute square of which is proportional to probability density for finding the particle.  This is 
Postulate 1 of quantum mechanics in most text books.

Imagine, now, infinitely long column and row vectors in which are stored all the numbers which are the values of 
Ψ(x) and Ψ*(x), respectively at all possible values of x. 

Thus, all integrals in this notation are actually just scalar products of two vectors.  They are formally infinite 
because in calculus the result is only exactly correct in the limit of dx0.  In all actual calculations of numbers, 
on computers, dx is a very small—but finite—∆x. This truly turns the function into a vector of numbers, as large 
as we care to make by using smaller values of ∆x and larger range of x.  This is a fine, because the human mind 
cannot grasp infinitesimal and infinity.

This idea is true for any number of coordinates, of course.

Relation between wavefunctions and vectors:



Wavefunctions are “representations of bra and ket vectors”:

Expanding arbitrary state functions as linear combinations of the complete set of 
eigenfunctions of an observable, dynamical variable operator A:

An arbitrary state vector |f > may be expressed as a superposition (linear combination) of members 
of a complete set:
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Next we introduce the special complete set known as the “position eigenfunctions.

The numbers ckf are said to be:  “ |f> in the A representation”.  One may of course use any other complete set to 
“represent”  | f >.  For example, the ckf from the complete set using the eigenfunctions of the Hermitian operator, 
d2/dx2 , i.e., sin(kx) and cos(kx), is the Fourier representation, better known as the Fourier Transform.  
The set of numbers <k’|B|k> is similarly said to be the operator B in the A representation.

The Identity operator



Position Eigenfunctions

The position operator xop is simple multiplication by the position x.  The eigenfunctions are the ingenious and
widely used Dirac delta functions, with the symbol δ(x-a), where a is a real number, and the properties: 
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To rationalize the normalization, one may think of the function near x=a to be very large but finite in a very 
narrow, but finite, region such that area under the curve = 1.

Thus expanding |f > in the eigenfunctions of x, i.e., the Dirac delta function, changes |f > into the wavefunction
Ψf (x) = |f > in the position representation, in analogy with the previous page.  



“The” Variation Principle and Variation Methods
One cannot overemphasize the immense importance of “the” variation principle to quantum chemistry, but it is 
equally important in numerous other fields, many of them in non-quantum engineering applications.
It turns out that eigenvalues and eigenvectors always emerge when a differential equation is subjected to 
boundary conditions.  Schrödinger himself invoked a variation principle to support his formulation of the 
Schrödinger Equation.

Quoting from https://en.wikipedia.org/wiki/Variational_principle: A variational principle is a scientific 
principle used within the calculus of variations, which develops general methods for finding functions which 
extremize the value of quantities that depend upon those functions. “For example...the shape of a chain 
suspended at both ends... is found by minimizing the gravitational potential energy”

Examples
•Lord Rayleigh's variational principle
•Ekeland's variational principle
•Fermat's principle in geometrical optics
•The principle of least action in mechanics, electromagnetic theory, and quantum mechanics
•Maupertuis' principle in classical mechanics
•The Einstein equation also involves a variational principle,  the Einstein–Hilbert action
•Gauss's principle of least constraint
•Hertz's principle of least curvature
•Palatini variation
•The variational method in quantum mechanics
•The finite element method

https://en.wikipedia.org/wiki/Variational_principle
https://en.wikipedia.org/wiki/Calculus_of_variations
https://en.wikipedia.org/wiki/Lord_Rayleigh
https://en.wikipedia.org/wiki/Rayleigh%E2%80%93Ritz_method
https://en.wikipedia.org/wiki/Ekeland%27s_variational_principle
https://en.wikipedia.org/wiki/Fermat%27s_principle
https://en.wikipedia.org/wiki/Geometrical_optics
https://en.wikipedia.org/wiki/Principle_of_least_action
https://en.wikipedia.org/wiki/Mechanics
https://en.wikipedia.org/wiki/Electromagnetic_theory
https://en.wikipedia.org/wiki/Quantum_mechanics
https://en.wikipedia.org/wiki/Maupertuis%27_principle
https://en.wikipedia.org/wiki/Classical_mechanics
https://en.wikipedia.org/wiki/Einstein_equation
https://en.wikipedia.org/wiki/Einstein%E2%80%93Hilbert_action
https://en.wikipedia.org/wiki/Gauss%27s_principle_of_least_constraint
https://en.wikipedia.org/wiki/Gauss%27s_principle_of_least_constraint%23Hertz.27s_principle_of_least_curvature
https://en.wikipedia.org/wiki/Palatini_variation
https://en.wikipedia.org/wiki/Variational_method_%28quantum_mechanics%29
https://en.wikipedia.org/wiki/Finite_element_method


The Variation Principle of Quantum Systems
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The power of the variation principle is that any approximate wavefunction for the ground  state of a quantum 
system is guaranteed to give an energy expectation value, <Eapprox> , that will be higher than the true ground state 
energy, E0..  This allows one to vary the “shape” of the trial wavefunction by any means available until the 
derivative of <Eapprox> with respect to all variables being varied = 0, and be satisfied that this will be the most 
accurate wave function of the type being used as ϕtrial .  

There is no danger of finding an energy that is too low.

In addition to the above “wavefunction” scheme, Kohn and Sham shared the Nobel Prize recently for proving and 
helping implement the so called density functional theory (DFT).  With DFT, one directly varies the electron 
density ϕ*trial ϕtrial to reach the energy minimum, instead of varying ϕtrial , which must always be squared to get 
the energy anyway.

There are different variation methods which can be classified into two broad classes: (1)linear variation method, 
and (2) non-linear variation methods.  We will begin with the linear variation method, which pervades most of 
the computational methods we will encountered in chemistry.   
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