Prelab Lecture
Chmy 374 Thur., March 22, 2018

Edited 22mar18, 21marl8

LAB REPORT:From the ClassicalThermol2Sub-17.pdf handout:

CALCULATIONS TO BE COMPLETED AFTER THE DRY LAB: Was not a dry lab

The values of p and 7 can now be used for the statistical mechanical calculations. In order to
calculate the rotational characteristic temperature ®,_, with Eq. (20), use the literature value for
the rotational constant f:’o =0.037315 cm [or calculate éo from the internuclear distance in the
molecule, r, =0.2667 nm, with Eqs. (17) to (19)]. From the literature value of the molecular
vibrational frequency in the gas phase, v, = 213.3 cm, calculate the vibration characteristic
temperature © ,, with Eq. (22). From the phonon frequencies given in the dry lab handout,
calculate the 12 vibration characteristic temperatures © .

A partially complete spreadsheet was posted on web

Calculate AES from Eq. (33) at each temperature using the Excel/Mathematica/Mathcad

spreadsheet you developed for the dry lab. Do the values obtained for AES agree satisfactorily?

If not, check the calculations and/or consider possible systematic errors. We can also rewrite
Eq. (33) in a form that more closely matches the Clausius-Clapeyron equation:
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Plot the LHS of Eq. (37) against /T, and determine both A.EEI? and the constant term graphically

or by least squares. Does this value of Aég agree with the average of the values obtained by
direct application of Eq. (37)? Does the constant term agree with the theoretical value?

Entropy and Enthalpy of Sublimation. Since we have a system of only one component, the
chemical potentials for I, in crystalline and gaseous forms, given in Egs. (32) and (25),

respectively, are equivalent to the molar Gibbs free energies G, and G, , aside from an additive
constant. The entropies of the two phases can be obtained by differentiating with respect to
temperature. The expressions obtained are
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The heat of sublimation at temperature 7 is

AHa ub = TAS\M: = T(Su - 5',;) (40)

Calculate the molar entropies .§‘ and 5 of the crystalline and vapor forms of I, at 320 K with

Eqs. (38) and (39), and obtain the molar heat of sublimation A!;'_‘ ., With Eq. (40). Compare it

with the value obtained by the Clausius-Clapeyron method and with any literature values that
you can find.



DISCUSSION

Of the two methods of determining AES with Egs. (33) and (37), which do you judge gives the

more precise value? Which gives the more accurate value? Which provides the better test of the
overall statistical mechanical approach? Compare this approach with the purely thermodynamic

method using the integrated Clausius-Clapeyron equation, taking into account the
approximations involved in the latter. State the average temperature corresponding to your
Clapeyron value of AH

sub-

Comment on the choice of representative values of v, for the 12 vibrational modes of the crystal.
How much would reasonable changes (say, 10 to 20 percent) in these values affect the results of

the calculations? [If possible, comment on the effect of using the Debye approximation (different
crystal vibrational frequencies) for the acoustic lattice modes instead of the Einstein
approximation (al| the same vibrational frequency). NOt Freaul red




I(s) > D(g). . [ Py,

eq \ X]

2(5) J ¢,

If solidis pure X=1

where (Prag) )eq = [12(g) |RT

Partial pressure iIs a very common way of expressing
concentration of gases. Does NOT depend on whether
other gases are present (if ideal gas behavior)



lodine Is a simple molecule:

We will NOW use the mass, bond length,
vibrational frequency, and heat of
sublimation and entropy of the crystal

to predict K., using statistical mechanics




e. Vapor Pressure = K, = exp(-AAYRT)

Finally, instead of equation (34), which has been made completely baffling by
“simplifying” it to death, we will use AA= Agas -Asolig = “RTINQ s + RTQgpyig + AE (sUb)
and vary the concentration (which appears in g, 0ften disguised as the volume,

V =nRT/p,,), until we find the pressure that makes AA = 0. That will be equilibrium, and
that will be the *“vapor pressure”

AA= A\/ap — Aylig
AA=—RT N2 AE(sub) = —RT In(qp) + AES(sUb) + RT In(Ggyig)
qSO|Id

AA = —RT |n{[(27zka 3/2 KT o X(l e al

p ahCB

")} + AES (sub) + RT NGy



A Cartoon:
l,(solid) - l,(gas)

few vibrational = very,very,very,...MANY translational
states states

A State 1 State 2

Energy

1) i

kT
Equilibrium Constant =
ratio of available states




Energy

Qualitatively, what will the equilibrium
constant, (K =N,/N,) be for this system?

3 questions:

a. Greater than 1 (AA = AE - TAS is negative) ?
b. Lessthanl (AA=AE-TAS s positive) ?

c. Can't tell?

A State 1

—

KgT

S=R In (avall. states)

AEO, I

partition function
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Partition function = number of available states

How to get the numbers of states???
Count them

Counting = summing = integration

Will be large if energy level spacing is small

This is EASILY determined by quantum mechanics:
What is true of ALL equations for energy levels in quantum mechanics??

h? h?
Spacing ~ : = >
mass x confinement length®  mAX




Effect of energy level spacing on partition function

h2 h2
Spacing ~ _ - = >
mass x confinement length®  mAXx

>
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h? h?
Spacing =~ _ - =
mass x confinement length®  mAX
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Example: Computing Q for an ideal gas of monoatomic atoms

Quantum mechanics gives the states for a free particle of mass m
in a I-dimensional box of length a,
212
n.“h
g, =— n =123...

JX

Ideal means independent particles, so that the energy of a system
of N atoms will just be the sum of the individual energies:

E, =) &,i=atomidentifier



There is nothing special about x. The energies for they and z
components of kinetic energy are independent of that for x, so to
get the energy and partition functions for the 3 dimensions can be
obtained simply from those for 1 dimension.

Ej = ij + Ejy + Ejz and Utrans = qtrans,x qtrans,y qtrans,z ; (the probability
of independent events is the product of the individual probabilities.)

Each molecule does its own thing. Therefore the system Q can be
written simply from the individual molecule translational partition
function: ~ny- h*/Bma,”

Uirans 10 = Ze_EjX/kBT = Ze ol
Because the levels are so closely spaced, the quantum number ) Ny
may be considered a continuous variable (atoms behave almost
classically) , thus giving —n,“h?/8ma3

KeT
qtrans 1D — _“e ° dnx

i.e., the integral of is a Gaussian functlon because the variable is
squared. We use only half, because n is never negative.




Gaussians
The Gaussian function (“bell-shaped curve”) is so common in
science, it is worth spending time getting very familiar with it.
Any Gaussian may be written as: —_X2

6202
In this form, o is the standard deviation, and of course has
the same units as x. This Gaussian has ¢ =1.00 and looks like:

o G is the half-width at 0.6065 of
08- l/the maximum.
061 o —X
(%) . Area= [ e?'dx = (27)"* o = 2.507
021 In general, the area is always
O'O-4ll3ll2llj|_'0'1'|2':|3'4|1 ver.yclose.toyzbasetimes
X altitude, i.e.,the area of a

triangle.



—n,*h?/8ma,’
KgT

o0

In the integral  Utrans x = Ie
0

What is making this integral LARGE? i.e., what makes the exponent small?

dn = Area under curve.

Large mass and large space to run around give small energy level spaceing.

Does the Gaussian have large or small standard deviation?
o2 = 4ma’k;T/h?
So, 6 = (4ma%k;T/h?2)/2 , and the integral under the whole curve is
(2w)Y/2 (4maZk,T/h?)*/2 , and half that because the integral starts at 0 gives:

Ograns, 10 = (2TmMaZkgT/h2)2 , where a, is the length of the box.

Because the motion in the 3 dimensions are independent, the 3D
partition function is simply Gns = (Oirans 10 )* = (2nmakyT/h2)3/2 =
(2nmkgT/h?)>2V, where V = a,a a,.
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Rotational partition function

—J(J+1)Nh*/87x% pur?

y h® /87° ur? g kgT

—E, /K, ]
Qrotation = Ze Erltel = 2(2‘] +1)e “eT
J J

KgT h® /87°ur?
2 2 .2 2 2 .2

but dE, :dJ(J+1)h [ 87 ur :(23+1)h | 87 ur

kT KgT kgT

—kgT 7 _ —kT _ 0

= e ‘dx = B e —e
Arotation h? / 87z%ur? ({ h? [ 87z°% ur? [ ]
B KgT _ 8x%ur’kgT

h? /872 ur? h?

Why will this integral be very, very, very much smaller than the translational one?
The mass is same

confinement length =r = the bond length for I, = 2.67 Angstroms



Vibrational Partition Function

D, =AE of dissociation

Use Harmonic Osc. T is not high

Potential
Energy

€,=(v+%)hv,, withv=0,1,2,3,

Bond ~(v+), — _
length Oyip = D€ *' if zero is at bottom
A"
Choosing zero of energy is arbitrary v

V
T if zero is at v=0

It is NEATER to choose zero of energy ~  _ Ze
at v=0 instead of bottom of well Quip =
Y%

So, q,,80esto1as TgoestoO



Neglecting zero point E gives same number of available states

€, =(v)hv,, withv=0,1,2,3,
Now energy does not include zero point vibrational energy
which does not have anything to do with temperature

h hv

qwb Ze ol _Ze ol Ze_ﬂhw
qwb Z(e—ﬂhv

call x=e""
Quib :ZXV1V=0,1,2,3...
Qi = (O + X+ X+ X+ X" +..X7)
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Qi = (X0 + X+ X5+ X7+ X" +..X7)

. 1
(X + X+ X+ X+ X +..X7) =
1-X
1
qub — 1_e—ﬂhv
1
qVIb — = 10%

1—g'e’



Concept of “vibrational temperature”

1
qvib — =hv
1-e*

Obviously, hv/kg has the units of temperature; it is the

temperature such that the Boltzmann factor = el

A common shorthand is to define ®vib = hV/kB

1
CIvib = —Ovib
l-e T




Putting it all together:

For any molecule:
gq= qtransqrotc vibqelec

For a linear polyatomic molecule:

Zyzmk T 3/2 T 3N =5 EeIeC|
g :( th j ) -0 ) Z “Ovib deleCI

ot j=1\l1—e T |
What is @ ??? This is NOT standard deviation; itis the “SYMMETRY NUMBER”

For a homonuclear diatomic o = 2, because the total wavefunction must either be
symmetric or anti-symmetric to interchange of two identical particles. Recall that
exchange of identical electrons requires the wavefunction to change sign. This leads
to the Pauli exclusion principle for all fermions, e.g., electrons.

lodine is a fermion because it has 53 protons and 74 neutrons, an odd number of
fermions. Because the rotational functions with even J are symmetric, they will not
be occupied. A good approximation is to divide by 2 because roughly half of the
rotational states cannot be occupied.



e. Vapor Pressure = K, = exp(-AAYRT)

Finally, instead of equation (34), which has been made completely baffling by
“simplifying” it to death, we will use AA= Agas -Asolig = “RTINQ s + RTQgpyig + AE (sUb)
and vary the concentration (which appears in g, 0ften disguised as the volume,

V =nRT/p,,), until we find the pressure that makes AA = 0. That will be equilibrium, and
that will be the *“vapor pressure”

AA= A\/ap — Aylig
AA=—RT N2 AE(sub) = —RT In(qp) + AES(sUb) + RT In(Ggyig)
qSO|Id

AA = —RT |n{[(27zka 3/2 KT o X(l e al

p ahCB

")} + AES (sub) + RT NGy
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