Stress Response in Extremophile

The idea that life is a delicate balance of chemical processes that can occur only within a narrow range of conditions is changing as scientists continue to discover life in extreme environments. The thermal features of Yellowstone National Park are one example. Pools of nearly boiling acid, once thought to be void of life, are now known to contain thriving populations of unicellular organisms and their viruses. Of the three domains of life (Eukarya, Bacteria, and Archaea), the Archaea are the least understood. Many of the organisms that are classified as extremophiles are members the archaeal domain of life. Currently these organisms are the focus of intense research because of our lack of understanding of their ability to thrive in conditions once thought uninhabitable and the possibility of isolating enzymes that can with stand harsh industrial conditions. The specific objectives of this project are two-fold: 1) learn about viruses from extreme environments. 2) understand the Sulfolbus solfataricus response to viral infection, oxidative stress, and heavy metals. Cutting edge proteomics, metabolomics, and activity-based protein profiling (ABPP) are being applied to these studies. Among the many exciting findings from this work is the extensive use of protein post-translational modification in Archaea. The relatively small genome size of Sulfolobus makes this an ideal organism for systems biology studies. 
This is being pursued in conjunction with other MSU research groups within the Thermal Biology Institute.

Research Associate: Dr. Walid Maaty.
Graduate students: Joshua Heinemann and Patricia Mathabe. 



Proteomics, Chemical Biology, Biochemistry, Analytical